DAY	We Are Learning To (WALT):	MODEL / INTRODUCTION	INDEPENDENT WORK	PLENARY
M	Mental: Know the names of fractions in numbers and in words Main: Identify if fractions are equivalent or not Aut031	Mental: Show children cards with fractions in numbers e.g. $1 / 4$ and in words e.g. quarter. Have them repeat them Main: Explain that the word equivalent means 'the same as' Ask children to complete a couple of sample questions on their whiteboards (it may be a good idea to just have the more able children do this with the TA) e.g. \qquad is / is not equivalent to \qquad If children are able to complete the sentences correctly have them work with the TA on deriving mixed numbers and improper fractions from diagrams (chocolate bars); if they are not secure enough with the sample questions TA to send them to the carpet e.g. 1a) $2^{1 / 2} 1$ b) 5 TA to explain that: - we need to look at how many pieces one whole chocolate bar has, not how many pieces there are in several of the chocolate bars to get the bottom number e.g. above each bar has 2 pieces so the bottom number is 2 . It is not 5 - a mixed number has whole numbers and fraction. To derive the mixed number we see how many whole chocolate bars there are e.g. above there are 2 whole chocolate bars - then we see what fraction there is in the bar that is not whole e.g. above the last bar is a $1 / 2$, so the mixed number is $21 / 2$ - an improper fraction is a fraction where the top number is greater than the bottom number - to get the top number for the improper fraction we count how many pieces e.g. above there are 5 pieces so the improper fraction is $\frac{5}{2}$ Teacher with remainder of class: Revise how a fraction tells you the equal-sized parts of a whole Revise how the word equivalent means 'the same as' and explain that today we will be comparing fractions to see if they are equivalent Model how to derive fractions from diagrams and use them to see if the fractions are equivalent or not e.g. $1 / 1$ one whole is equivalent to $2 / 2$ two halves	Lower ability - use diagrams to identify equivalent fractions (given fractions) Middle ability - use diagrams to identify equivalent fractions (NOT given fractions) Higher ability - as middle ability, but fractions with different denominators $\mathrm{G}+\mathrm{T}$ - derive mixed numbers and improper fractions from diagrams	Give children squared paper Ask them to draw their own 2 squares / rectangles of the same size and divide them in different ways e.g. one in to halves and the other in to quarters Compare the diagrams, describing them as equivalent or not

© www.SaveTeachersSundays.com 2013

To access the complete version, termly planning and all of the resources needed to teach these lessons, visit
http://www.saveteacherssundays.com/maths/year-3/107/year-3-maths-planning-autumn-1/

